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ABSTRACT

<4 Certain commonly occurring types of network, whether
directed or undirected, exhibit a staged structure. Two
algorithms, based on node partitioning, are presented which take
advantage of such structure and which use a Markov transition-
probability form of recursion. The algorithm for directed A
networks is related to the Markov chain formulation of Bailey and
Kulkarni, but for undirected networks a more detailed form of
state definition is used related to one suggested by Rosenthal.

The computational advantages of the algorithms are discussed
and some numerical results presented.
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Key Words: Network Reliability, Source-to-sink connectedness,

Node Partition, Staged Network, Recursive Algorithm.
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1. INTRODUCTION

Consider a network G with node set N and arc set A. The
nodes are perfect but arcs fail randomly and independently with
probability 1-p,;, aceAh. Let s and t be two specified nodes. The
calculation of

Pst = prob (there is a path from s to t) (1.1)
is called the s-t connectedness problen.

This problem is NP hard [10]. However, many algorithms
exist which solve it by enumerating key structures in the network.
If the number of these is small then such an algorithm may be
computationally efficient. Examples include spanning trees [2],
acyclic subgraphs [8], K-graphs [7] and cutsets [4].

A number of methods use node partition [1,6,9]. Though none
of these make any special assumption about the form of the net-
work, node partition seems to be a particularly good approach for
networks which have a staged structure. In this paper we consider
two node partition algorithms which exploit such structure.

Our starting point is a decomposition used by Shogan [9] for
directed networks where the nodes are divided into disjoint
groups - which we call stages - and 'events' are then defined at
each stage in a way which allows their probabilities of
occurrence to be calcuylated from those of the previous stage.
Shogan describes an algorithm based on path enumeration and
mentions, but does not follow the possibility of one based on
state enumeration. We suggest a modification of the definition
of event given by Shogah which gives an algorithm of this latter

type having a simpler form than that based on path enumeration.
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" Undirected networks can often also be decomposed into stages.

) OQur main result will be to show how the algorithm can be adapted

to deal with this case, too.

Both versions of the algorithm are related to ones already

! cited. The directed network version is related to that proposed
% by Bailey and Kulkarni [1], whilst the undirected network
“5 algorithm is a recursive version of the general, but not fully
ﬁ specified, framework described by Rosenthal [6].

e As well as describing the algorithms, we assess their
% computational advantages - and drawbacks - including some
i; numerical results.

A For clarity, the bulk of our discussion assumes a form of

? stage decomposition that is simpler than necessary. In section 5
‘3 we show how the stage decomposition can be generalized to allow
: versions of the algorithms that are, in certain situations, much
5: more efficient than the prototype versions.
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2. DEFINITIONS AND NOTATION

F. 2.1 Staged Networks

‘. 0
?; Let G be a network with node set N and arc set A. An arc
‘s g

”, connecting node i to node j is denoted by (i,j). We shall say
Ko that G is a staged network if N can be divided into a number, Q
>

o say, of disjoint sets

)
[n)

* S1 = {s}, sp,...,8q = {t} (2.1)
v, such that

O
b
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S: if (i,j)eA and JeSq then ieSq-quSq. (2.2)
(Shogan gives a slightly more general version which allows

1es1usq_1usq in (2.2). The generalized definition of Section §

incorporates this case.)

Condition S ensures that any path from s to t can only go
from nodes of one stage to those of the next stage. Thus no
'backtracking' from a higher to lower stage is possible.

The node-stages induce a corresponding stage structure on
the arcs A, dividing these into disjoint sets:

Ao, A3,...,AQ
where
Aq = {(i,3) | 1eSq-quSq and jesg}. (2.3)

To note which arcs of Aq are up (operating) and which are

down (failed), we define
Xi = 1 or 0 according as arc ieAq is up or down, and
call

X = (x1'X2'...'x|AqI). (2.4)

a failure pattern of Aq. It will be clear, from the context,

which subset Aq is being referred to, so the dependence of X on q
will be suppressed.
Those arcs which, under X, are up, will be called the set of

up-arcs of Aq. The probability of obtaining X is

p(X) = n pa n (1-pa). (2.5)
a:xa=1 a:Xa-O
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There are 2 ql distinct failure patterns of Aq and we denote
the set of all these as Fgq.
Consider now an undirected network G. We shall say that G
is staged if the nodes can be divided into disjoint sets
Sy = {s}, Spy...,8q = {t}

such that
T: if (i,J) €A and ieSgy, 1<q<Q then jeSq-qUSquSqsq- (2.6)

Condition T requires that an arc can only join two nodes of
the same or adjacent stages, Decomposition of the arc set into
disjoint subsets Aq exactly as defined in (2.3) is possible, and
the definition of failure pattern X given in (2.4) also still
applies. An example of an undirected staged network is given in
Fig. 2.

2.2 Recursive Markov Algorithms

The algorithms that we investigate operate in the following
way:

(i) A set of events, E, has to be found where each event
IcE, is associated with some subset of nodes,

(11) The events are Markov in the sense that their
probabilities of occurrence, pj, can be calculated from the

standard Markov one-step transition formula

Py = ¥ P19y JeE (2.8)
IecE

where

qrg = prob (J ocecurs| I occurs) (2.9)
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is the transition probability.

(iii) If the events can be numbered so that transitions go
only from a lower to higher numbered event, then grg = 0 if JKI
and the pj may be calculated recursively from (2.8) in increasing
order of J. A special form of this is when the events can be
grouped into disjoint sets Eq+E2,...,EQ with events of one group
giving rise to events of the next higher group only. Then (2.8)

reduces to

P; = 1 Pgarg» JEE 1o a=1,2,...,Q. (2.10)
IeE
q
3. THE ALGORITHMS
3.1 A Markov Algorithm for a Directed Staged Network

Consider a directed staged network. The algorithm of Shogan
focuses on events associated with a particular stage. Let V be a

subset of Sq. Shogan defines the events

U(V) = "there is a path from s to at least one
node of V"

P (3.1)

I(V) = "there are paths from s to all nodes of V"

J
and gives exclusion-inclusion formulas relating the probabilities

of occurrence of such events to corresponding events of the

u

previous stage. o
It is perhaps simpler to use the following events. Let \
VcSg-1 and WecS,y and define n
Iy

'y
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[V] = "there is a path from s to all nodes of V,

but none from s to Sg-jy\v" (3.2)

[v,W] "Given [V] has occurred, each node of W is
reachable from some node of V but there is
no path from Sg-q\V to W, or from V to Sg\W" (3.3)
The event (3.2) can be viewed as the union of a number of events,
of a more general type given by Bailey and Kulkarni [1], that
utilizes the staged structure.
Let p[v] and p[V,W] denote the probabilities that [V] and

[V,W] occur. Then

1

"

pls]

(3.4)

plwWw] plviplv,W], Wgsq, q=2,...,Q.

)
VgSq_1

This has form (2.10): the events {[V], vssq_1} form Eq-1 and the
p(v,W] are tne qy5. The last stage calculation (when q = Q and
W - [t}) yields pgy, the probability of s-t connectedness.

What makes (3.4) simple is that the p[V,W] are very easily
calculated, because [V,W] depends only on the states of the arcs
of Aq. To see this, suppose that veV, weSq and there is a path
of up-arcs from v to w. From the definition of staged network,
this path may initially pass through nodes of Sq_1, however, once
it reaches a node of sq it can only continue through nodes of Sq
until w is reached. Thus, given [V] has occurred, all the nodes

of Sq_1 on the path must belong to V. If v' is the last node of V
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on the path,

there is, therefore, a path from v'eV to w comprised

entirely of up-arcs of Aq. Similarily a path from ucsq_1\v to W

would, given that [V] has occurred, imply the existence of some

u'esq_1\v and a path of up-arcs of Aq from u' to w, It follows,

therefore, that [V,W] occurs if and only if, using paths with

arcs in Aq only, each node of W is reachable from some node of V,
no node of Sq\w is reachable from V, no node of W is reachable
from Sq-q4\V. This is the required result. It can be viewed in
the following way:

Lemma 1}

Let Vgsq_1 and Xqu. Then the pair V,X induces a subset

WeSq defined by

W(V,X) = {wlwcsq and there is a path, comprised only
of up-arcs of Aq (under X), from some node
of V to w] (3.5)
0
Figure 1 illustrates an example of such a W{(V,X).
Clearly
plv,Wwl = } p(Xx) (3.6)
XeF
qQ
W(V,X) = W
and (3.4) reduces to p[s) = 1 and
plwl = Y plvlp(X), g=2,...,Q. (3.7)
vecs XeF
q-1 q

W(V,X) = W

In numerical calculations (3.7) is easy to implement as there is

no need to compute the p[W] one at a time. 1Instead, not=2 that in

Y N RN RN G Oy .' o« .-‘ -\‘_..\_.\‘.- KRS <« R
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calculating all the p[W], each V,X combination is used once only.
Thus (3.7) can be implemented as

Algorithm A

pls] « 1
for g=2,..,Q
plW] « 0 all WeSq
for each VcSg-1
for each XeFgq (3.8)
W « W(V,X)
plw]l « p[w] + p[VvIp(X)
next X
next V
next gq
3.2 A Markov Algorithm for Undirected Staged Networks
For an undirected network the event definition (3.2) does
not give a useful algorithm because a path may 'backtrack.'
Instead, consider all the nodes of a stage Sq and think of them

as partitioned into disjoint groups. Fig. 2 illustrates S), parti-

tioned as (1)(&)(34). We denuvte a partition by w and the set of
all partitions of Sq by Tq, and define the following event:

(Il = [n; vl

n

q
“nch and, using arcs of U Ar only:
r=2

(i) each group of nodes in m is connected

(ii) nodes between groups are unconnected

(iii) 8 is connected to group u" (3.9)




The set of all such events associated with Sq will be

denoted by Eq. Fig. 2 illustrates the event ((1)(2)(34);3]¢cE>

and the event [(5)(67);2]eE3.

The above definition can be viewed as a specialization of a
general type of event considered by Rosenthal [6], who outlines
an algorithm framework based on combining subnetworks two at a
time. The framework does not make specific use of staged
structure but clearly has such a form in mind. The algorithm
below takes specific note of the Markov nature of the
calculation, so that the computational form is somewhat different

to that of Rosenthal's even though the event probabilities are

essentially the same. We use an analogue of Lemma 1:
Lemma 2 An event I = [m;A]eEq-q and failure pattern XeFg induces

a unique event J = [p;v]sEq, which will be denoted by J(I,X).
Proof We form a subnetwork, H, as follows. The node set 1is
Sq-1uSq. The nodes of Sgq are treated normally. However, those
of Sq_1 are divided by the partition n into disjoint groups and,
in H, the nodes of each group are treated as being combined into
a single node (there being a separate node for each set). The
arc set of H is just the set of up-arcs of X.

Now in H the nodes of Sq can be naturally partitioned into
disjoint sets; all the nodes within a set are connected (possibly
via paths which pass through combined nodes of Sq-1). but nodes

belonging to different sets are disconnected. If we denote this

ot e A e
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partition by p and take v to be the set (of p) which is connected
to A, then this uniquely defines J = [p;v]. a
Fig. 2 gives an example of such an event J(I,X).

The same recursive algorithm (3.7) still applies.

pls;1] =1
pldl = ¥ Y plIlp(X), JEE, q=2,...,Q
1¢eE XeF
q-1 q
J(I,X) = (3.10)

and again the modified form (3.8) can be used for numerical
calculation:

Algorithm B

pls;1] = 1

for g=2,...,Q

plJl « 0 all JeEgq
for each IeEg-q (3.11)
for each XeFq

J « J(I,X)

plW] = p(W] + plIlp(X)
next X
next I

next q

4. COMPUTATIONAL ASPECTS AND COMPLEXITY

For Algorithm A, the calculation of W(V,X) and p[W] is done

Is._.1 + |a_]
2 971 a (5.1)
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times at stage q. For Algorithm B, finding the partitions p is
the most time consuming calculation, From the definition of
J(I,X) = [p;v] where I = [w;A] we see that p depends on 7 and X
only and not on v. Thus in (3.11) p needs only be determined for
each (v,X) and not each (»,X,v), a total of

|4l
g(]8g-11) = 2 (4.2)

times, where g(m) = number of possible partitions of m objects,
is the sum of Stirling numbers of the second kind (see, eg. [5]).
As g grows hyperexponentially, see Table 1 for selected values,

this is the main factor limiting the size of networks that can be

handled.
Table 1
g(m) = number of partitions of m objects
m 1 2 3 y 5 6 7 8
2m 2 4 8 16 32 64 128 256
glm) 1 2 5 15 52 203 877 4140

Each calculation of W in Algorithm A, and p in Algorithm B,
requires examination of the connectivity of the subgraph
Gq = {Sq-1USqsAql. An algorithm like "breadth-first search" (see
[5], for example) can be used for this, and will need
0(|Sg-1|+|Sql*+Aq) elementary operations.

Algorithm B has the additional requirement of a hash

function or subroutine which (i) assigns a label to each

......
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partition (of a set of given cardinality) and, inversely, (ii)
given a particular label, specifies the precise grouping of the
nodes in that partition. Part (i) is needed to identify the
component of the array p[J) to be incremented in (3.11) and (ii)
is needed to allow partitions to be stepped through
systematically in the outer loop of (3.11). The Appendix gives
such a subroutine, whose complexity is O0(m) where m is the
cardinality of the set being partitioned.

To test its effectiveness, a Fortran version of Algorithm B
was used, on an IBM Personal Computer AT, to calculated pgy for
the dodecahedron network of Fig. 3 and the grid network of Fig. 4.
The computation time was 4% minutes and 52 minutes respectively.
Though we have not made a direct comparison, this compares well
with other algorithms. For example, for the test network used in
{1], which is in effect a dodecahedron reduced by 3 nodes and §
arcs, Bailey and Kulkarni report timings of 54 minutes, 8 minutes
and 1 minute 26 seconds using respectively, the algorithms of
Buzacott [3], Provan and Ball [4] and their own [1], on an IBM
4381~k which is approximately 10 times faster than the IBM PC-AT,
(all algorithms computed the reliability as .99806 when p; = 0.9,
all a).

Both Algorithms A and B resemble dynamic programming
recursions whose calculations of one stage depend only on the
results of the immediately preceding stage. For networks like the

grid of Fig. 4, this means that a substantial computational

. . Wy et . At ettt f m e ea . X
A !p.\ ‘ L) - SaAS AT AT ).\'.'y“).'.- . % ,.\-’. '..\.‘_ e . - ’-.,- o oy !.(.(;,-u s

] Lo v P

WKL gt




_13_

saving is possible by avoiding the repetition of identical calcu-
lations made at each stage. More precisely, suppose the subnet-
works Gq = {Sq-1uSq.,Aq} and Gp = {Sp-quSp,Ap} (with q<r, say)
have exactly the same structure. Then, during the calculations at
stage q, the computed values of W(V,X) (respectively J(I,X))
should be saved for all VcSgq-y (respectively IecEg-1) and XeFq.
This time consuming computation need not then be repeated during
the rth stage calculation, as, with suitable labelling of the
nodes and arcs of Gp, so that they correspond to those of Gq, the
same values of W(V,X) (respectively J(I,X)) can be used for
VeSp-q1 (respectively IeEn.q) and XeFpn.

For example in the grid network of Fig. 4, the CPU time of
52 minutes is mostly taken up by the calculations of stage 3 (12
min 5 secs) and of stages 4, 5 and 6 (13 min 10 secs each), As
Gq (q=3,4,5,6) are identical, we would estimate an algorithm that
avoids the repeated calculation of the J(I,X) would reduce the
computation by more than half.

Finally we note that, for clarity of exposition, an unnéces-
sarily rigid definition of staging has been given. In the next
section we show how the definition can be generalized. It should
be emphasized that though the timings above already compare favor-
ably with published work, the use of generalized stages can lead

to further substantial savings in computing time,

--? 2 ‘.'... e et A\ o >, ST RN e, ‘ . -...\;,3’:.’_\ -.._-. N S ...'\-_'- _\‘."_\ ce \ o
AR BN s} n f e 2.00 p O, , by o .
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5. OVERLAPPING STAGES

- -~

The definitions of staging, S and T, can be relaxed to give
more flexibility to the two algorithms. The following generali-

zation can be used for both directed and undirected networks.

-

s U: There are three sequences of subsets of N:
Sy, = {S}, Sps...58Q = {t}
N M1, Mo,...,Mq-g (5.1)

Ni = {s}, No,...,Ng = {t}

such that
o
} Q
g q_‘,
Sq = (Sq_1\Mq_1)qu

: Mq_“ E Sq-" q=2..-o,Q (5v3)
L] Q'1
Oy N o (US.) = 9¢.
. q r-1 r
H
: And for any {(i,j)eA:
g if 1eNgq, JeNp and gq>r then jeSg- (5.4)
A a
(]
! The condition (5.3) allows the sets S, to overlap. Conditions
4
), S and T comprise the special case Mq = Sq, all q, when Nq = Sq;
: the S, are then disjoint and (5.4) reduces to (2.2) or (2.6).
5 It is readily verified that the Nq are disjoint and that

Q

UN_ = N, (5.5)

) q=1 q

IR AP - g —, A Y hd
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The node stages induce a staged structure on the arcs which

still decompose into disjoint subsets

Q
Ays Agseecshg With LzJAq - A (5.6)
where
L {(1,J)|i€Sq_1qu and jeNq}. (5.7)

With this definition of Sq and Aq. Algorithms A and B stijll
apply completely unaltered.

The stage q calculations are still of the order of (4.1) or
(4.2) under condition U. The calculations of stage q will thus be
efficient if Sq-1 and Aq are such that the following two
conditions are met.

(i) The cardinality of Sq-1 is kept small to keep small the
factor involving |Sq_1| in (4.1) or (4.2). This requires making
[Mg-1] as large, and |Ng| as small as possible.

(ii) The cardinality of Aq is kept small to keep small the

|A
factor 2 9" in (4.1) or (4.2). This can be done, indirectly, by

making |[Ng| as small as possible.

There is a trade-off here in that a small |Ngq| at each stage
Wwill make for a larger total number of stages Q. As computational
complexity depends only linearly on Q, but exponentially on IAql,
the trade in the direction of small |Nq| will almost always be
worth making.

As an example consider the grid of Fig. 4. 1If, instead of

the staging given in the figure, we use
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S = (1,2,...,6),

S3 = (SZ\(1))U7 (2:3»"017)

(3,4,...,8)

[}

Sy = (S3\(2))u8

S5 = (Sy\(3))u9 = (4,5,...,9)

A S30 = (25,26,...,30)

831 = (t)
then |Sq| = 6, [Mg-q| = |[Ng| = 1 for g = 2,3,....30, and |aq] s 2
for q = 3,4,...30. The four main stages of the original
2 decomposition, each with |Aq| = 11, is thus replaced by 24 stages
each with |Aq| $ 2. The computational complexity is thus reduced

by a factor ~ (4x2Vl)/(24x22) = 85.3. Because of incidental

ﬁ computational overheads which we have not fully accounted for
’ (such as initialization of arrays), the actual improvement in
; speed will be by a factor rather less 85.3; however the
" improvement is still very substantial. A Fortran implementation
P of this version of staging reduced the computing time, from the

52 minutes quoted previously, to 1 minute 58 seconds.
A similar use of overlapping stages for the dodecahedron

example of Fig. 3 reduced computation time from 4Y, minutes to 34

X seconds.
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APPENDIX
We describe here a method of labelling partitions and its
inverse which enables a partition to be recovered from its label.
The partitions of M objects can be divided into M sets, the
! kth set comprising all those partitions where the objects are
divided into k groups. For instance (13)(2)(4) represents the
partition of U4 objects into 3 groups: (13), (2) and (4); this
partition thus belongs to the 3rd set. Let
g(k,M) = numSer of partitions (of M objects)
: in the kth set
’ These are the Stirling numbers of the second kind (see, for
example, [5]).

We shall label partitions in the order of these sets (i.e.
those of the first set first, then those of the second set, and
so on). The position of a partition is thus completely defined
once the position within the set to which it belongs is fixed.
Table 1A illustrates one method by which the partitions of m
objects may be built up by systematically listing all the ways
that the mth object can be adjointed to each of the partitions of

the previous m-1 objects. The method used is as follows,

o
{
i
|
L)

For a partition of m objects, let ky be the set to which it
belongs and j, its position in the set. Now, a partition is
defined by specifying, for each object m, the group np to which
it belongs. In Table 1A, ky and JM are determined from np,

(m=1,2,...,M) using:

. P . - S - “p® LF 3T 37 O &7 o
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Km = km-1, Jm = (Im-1"Vkp-1+np if ngp S kp-j

km = np, Jm = Jm-1+8(kp,m)-g(ky-1,m-1) otherwise

which recursively gives the position j,,kp of the partition of

the first m objects, for m=1,2,...,M.

Table 1A

Partition of m objects into k groups

1 (1) (12) (123) (1234)

2 (1)(2) (13)(2) (134)(2)
(13)(24)

(1)(23) (14)(23)

(1)(234)

(12)(3) (124)(3)

(12)(34)

(123)(4)

3 (1) (2)(3) (14)(2)(3)
(1)(24)(3)
(1)(2)(34)
(13)(2) (u)
(1)(23) (4)
(12)(3) (W)

4 (1)(2)(3) (W)

T T T T S R e R N S G R SR
'y (e Yy . W o N T
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The overall position of a partition is
k -1

. r= "] glk,m) + §_.
3, k=1

The inverse calculation allows the group, ng,, to which each

n
f; object m belongs, to be calculated from r. It is as follows.
N
k Set m = M and determine kp,jy (%ky,jy) from the conditions
"
kM-1 kM
X r- ") g(k,m) = y >0, r - 1g(k,M) s 0.
., k=1 k=1

3% %

Moreover g(k,m) = kg(k,m) + g(k-1,m-1), so that

b A. Either jp-kpg(kp,m-1) = j>0, in which case the partition (of
? the first m objects) is the jth amongst the last g(kp-1,m-1)
: partitions of the kjth set. "This means the object is in the last
J group (on its own!) and so

é N = Kpmy Kp-1 = Kp=1, Jp-q = J.

B. Otherwise we can set kp-q = kp and find ngp,jp-1 from the

conditions

Nm = dm ~(ip=1=1) kp > 0, Jp - Jp-1Kkp S O.

e Il Dl gy el

This fixes object m as being in group np; and the partition of

the first m-1 objects as being the jp-q1th in the Km-1th set,

(RO

Thus setting m « m-1, we can repeat steps A or B until m=1,

when we set nqy = 1; at which stage all the np (m=1,2,...,M) have

been found.
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Figure 1 A Directed Staged Network

Sy (s) 82 1,2,3) 53 = (4,5,6) S, = (t)
Az = (a,b,...,8) A3 = (h,i,...,n) A(‘ = (O.P,q)
Event [V] = [(2,3)] has occurred at stage 2.
A2 has failure pattern X = (0101000).

W(V,X) = (4,5).
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% Figure 2 An Undirected Staged Network
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S, = () 5, =1(1,2,3,4) Sy = (5,6,7) 5, = (©)

A2 = (a,b,...,8) A3 = (h,1i,...,0) A4 = (p,q,r)

Event T = [(1)(2)(34);:3] has occurred at stage 2.

R Cady:

A2 has failure pattern X = (11010100)
J(1,X) = [(5)(67);2]
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Figure 3 Dodecahedron
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S1 = (s) S2 = (2,3,4) S3 = (5,6,...,10) s, = (11,12,...,16)

4
55 = (17,18,19) S6 = (t)
: A2 = (1,2,3) A3 = (4,5,...,12) AA = (13,14,...,21)
" Ag = (22,23,...,27) A, = (28,29,30)
p(arc operational) reliability
.5 . 290155

.9 .997120
.95 .999705
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P

b Figure 4 A Crid Network
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Reliability = 0.5 if p(arc operating) = 0.5

§ = (s) 82 = (1,2,...,6) S3 = (7,8,...,12)

5, = (13,14,,..,18) S5 = (19,20,...,24) 86 = (25,26,...,30) S7 = (t) - °
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